TY - JOUR AU - Asier Piñeiro Orioli AU - Ana Maria Rey AB - We investigate the subradiance properties of n≥2 multilevel fermionic atoms loaded into the lowest motional level of a single trap (e.g.~a single optical lattice site or an optical tweezer). As pointed out in our previous work [arXiv:1907.05541], perfectly dark subradiant states emerge from the interplay between fermionic statistics and dipolar interactions. While in [arXiv:1907.05541] we focused on the n=2 case, here we provide an in-depth analysis of the single-site dark states for generic filling n, and show a tight connection between generic dark states and total angular momentum eigenstates. We show how the latter can also be used to understand the full eigenstate structure of the single-site problem, which we analyze numerically. Apart from this, we discuss two possible schemes to coherently prepare dark states using either a Raman transition or an external magnetic field to lift the Zeeman degeneracy. Although the analysis focuses on the single-site problem, we show that multi-site dark states can be trivially constructed in any geometry out of product states of single-site dark states. Finally, we discuss some possible implementations with alkaline-earth(-like) atoms such as 171Yb or 87Sr loaded into optical lattices, where they could be used for potential applications in quantum metrology and quantum information. BT - Physical Review Letters A DA - 2020-04 DO - 10.1103/PhysRevA.101.043816 N2 - We investigate the subradiance properties of n≥2 multilevel fermionic atoms loaded into the lowest motional level of a single trap (e.g.~a single optical lattice site or an optical tweezer). As pointed out in our previous work [arXiv:1907.05541], perfectly dark subradiant states emerge from the interplay between fermionic statistics and dipolar interactions. While in [arXiv:1907.05541] we focused on the n=2 case, here we provide an in-depth analysis of the single-site dark states for generic filling n, and show a tight connection between generic dark states and total angular momentum eigenstates. We show how the latter can also be used to understand the full eigenstate structure of the single-site problem, which we analyze numerically. Apart from this, we discuss two possible schemes to coherently prepare dark states using either a Raman transition or an external magnetic field to lift the Zeeman degeneracy. Although the analysis focuses on the single-site problem, we show that multi-site dark states can be trivially constructed in any geometry out of product states of single-site dark states. Finally, we discuss some possible implementations with alkaline-earth(-like) atoms such as 171Yb or 87Sr loaded into optical lattices, where they could be used for potential applications in quantum metrology and quantum information. PY - 2020 EP - 043816 T2 - Physical Review Letters A TI - Subradiance of multilevel fermionic atoms in arrays with filling n≥2 UR - https://arxiv.org/abs/1910.13100 VL - 101 ER -