Facebook Twitter Instagram YouTube

News & Highlights

Research Highlights

Published: Mon, 08/13/2018 - 2:45pm

A collaboration between the Thompson Lab and Rey’s theory group is exploiting phenomena related to Quantum Information Science and Technology (QIST), such as entanglement, to break through previous barriers of quantum precision defined by the Standard Quantum Limit. These advances may transform typical physics laboratories into probes for the most fundamental questions of our universe.

 

The chaos within a black hole scrambles information. Gravity tugs on time in tiny, discrete steps. A phantom-like presence pervades our universe, yet evades detection. These intangible phenomena may seem like mere conjectures of science fiction, but in reality, experimental comprehension is not far, in neither time nor space.

Astronomical advances in quantum simulators and quantum sensors will likely be made within the decade, and the leading experiments for black holes, gravitons, and dark matter will be not in space, but in basements – sitting on tables, in a black room lit only by lasers.

These experiments, generally called quantum precision measurements, are leading the forefront of our fundamental understanding...

Left to their own devices, deuterium atoms would attach themselves to cold specks of soot floating in interstellar gas clouds and remain there...

Triatomic hydrogen ion (H3+) has many talents. In interstellar clouds, it can be blown apart by free low-energy free...

The race is on! Two mice chase one another around a curvy, roughly elliptical white stripe. But, the goal can't be the finish line –...

Pages